If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9+u^2-10u=0
a = 1; b = -10; c = +9;
Δ = b2-4ac
Δ = -102-4·1·9
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8}{2*1}=\frac{2}{2} =1 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8}{2*1}=\frac{18}{2} =9 $
| 2x=3x-6=32 | | 2x=3x-6=74 | | 9(x-15)=372 | | (13x+11+10x-12÷2)=45 | | 0.5x-0.6=0.6x-5 | | 25=6(7)a | | (x+18−2x−316)=3(34x−14)−38(3x−2) | | 30,000-0.2x=80,000 | | 7x8=56 | | (3.6)+(3.x)=24 | | -152+x=108+14x | | 12x^2-68x+84=0 | | 4-(x-3)=+8x | | y=(-12)^3-7 | | y*0.8=206.25 | | -12x-19=-9x+26 | | 14=21-7(2-1w) | | 5n-2=n+7 | | x+5/6=9/10 | | -5x-67=-2x+32 | | 5x÷3=15 | | 5x+3-2x=2(x+1)= | | w/6-4=1 | | 3(2y+3)=3 | | 1/10z-4=-10 | | (x+5)/6-6=5 | | 2d+4=10+-5d | | 41=29+y | | -2-13.8x=-8x-6x+2 | | (3n)+11=10 | | 3x-57=75+9x | | 3(w+2)+w=4w-1)+9 |